microRNA-425 loss mediates amyloid plaque microenvironment heterogeneity and promotes neurodegenerative pathologies

microRNA-425 缺失介导淀粉样斑块微环境异质性并促进神经退行性疾病

阅读:4
作者:Yong-Bo Hu, Yong-Fang Zhang, Ru-Jing Ren, Eric B Dammer, Xin-Yi Xie, Shi-Wu Chen, Qiang Huang, Wan-Ying Huang, Rui Zhang, Hong-Zhuan Chen, Hao Wang, Gang Wang

Abstract

Different cellular and molecular changes underlie the pathogenesis of Alzheimer's disease (AD). Among these, neuron-specific dysregulation is a necessary event for accumulation of classic pathologies including amyloid plaques. Here, we show that AD-associated pathophysiology including neuronal cell death, inflammatory signaling, and endolysosomal dysfunction is spatially colocalized to amyloid plaques in regions with abnormal microRNA-425 (miR-425) levels and this change leads to focal brain microenvironment heterogeneity, that is, an amyloid plaque-associated microenvironment (APAM). APAM consists of multiple specific neurodegenerative signature pathologies associated with senile plaques that contribute to the heterogeneity and complexity of AD. Remarkably, miR-425, a neuronal-specific regulator decreased in AD brain, maintains a normal spatial transcriptome within brain neurons. We tested the hypothesis that miR-425 loss correlates with enhanced levels of mRNA targets downstream, supporting APAM and AD progression. A miR-425-deficient mouse model has enhanced APP amyloidogenic processing, neuroinflammation, neuron loss, and cognitive impairment. In the APP/PS1 mouse model, intervening with miR-425 supplementation ameliorated APAM changes and memory deficits. This study reveals a novel mechanism of dysregulation of spatial transcriptomic changes in AD brain, identifying a probable neuronal-specific microRNA regulator capable of staving off amyloid pathogenesis. Moreover, our findings provide new insights for developing AD treatment strategies with miRNA oligonucleotide(s).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。