RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding

通过转录腺苷甲基化和微处理器结合确定 RNA 命运

阅读:5
作者:Philip Knuckles, Sarah H Carl, Michael Musheev, Christof Niehrs, Alice Wenger, Marc Bühler

Abstract

Eukaryotic gene expression is heavily regulated at the transcriptional and post-transcriptional levels. An additional layer of regulation occurs co-transcriptionally through processing and decay of nascent transcripts physically associated with chromatin. This process involves RNA interference (RNAi) machinery and is well documented in yeast, but little is known about its conservation in mammals. Here we show that Dgcr8 and Drosha physically associate with chromatin in murine embryonic stem cells (mES), specifically with a subset of transcribed coding and noncoding genes. Dgcr8 recruitment to chromatin is dependent on transcription as well as methyltransferase-like 3 (Mettl3), which catalyzes RNA N6-methyladenosine (m6A). Intriguingly, we found that acute temperature stress causes radical relocalization of Dgcr8 and Mettl3 to heat-shock genes, where they act to co-transcriptionally mark mRNAs for subsequent RNA degradation. Together, our findings elucidate a novel mode of co-transcriptional gene regulation, in which m6A serves as a chemical mark that instigates subsequent post-transcriptional RNA-processing events.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。