Synaptic remodeling of GluA1 and GluA2 expression in the nucleus accumbens promotes susceptibility to cognitive deficits concomitant with downstream GSK3 β mediated neurotoxicity in female mice during abstinence from voluntary oral methamphetamine

伏隔核中 GluA1 和 GluA2 表达的突触重塑导致雌性小鼠在自愿停止口服甲基苯丙胺期间更容易出现认知缺陷,同时还会引起下游 GSK3 β 介导的神经毒性

阅读:5
作者:Nicoletta Memos, Jorge A Avila, Edgar Rodriguez, Peter A Serrano

Abstract

Stimulant-use disorders can present with long-term cognitive and mental health deficits. Little is known about the underlying molecular mechanisms perpetuating sex differences in cognitive and behavioral deficits in preclinical models of addiction to stimulants such as methamphetamine (MA). The current study investigated the neurochemical shifts underlying sex disparities in MA-induced working memory deficits and an addictive phenotype following abstinence from chronic MA abuse. We used our previously reported mouse model of voluntary oral methamphetamine administration (VOMA) consisting of an acquisition phase (days 1-14) characterized by escalating doses of MA and a binge phase (days 14-28) characterized by static doses. Female VOMA mice exhibited sustained MA consumption during the binge phase, demonstrating sex-specific vulnerabilities to the maintenance of MA addiction. The 8-arm radial maze was used to test spatial working memory performance following abstinence from VOMA. Results indicate working memory deficits correlated to higher MA consumption in females only. Hippocampal and accumbal tissue were collected and analyzed by immunoblotting. Female VOMA mice had decreased GluA1, but not GluA2, in the hippocampus, which may perpetuate synaptic destabilization and working memory deficits. Female-specific increases in GluA1 and p-GSK3β expression in accumbal tissue suggest vulnerability toward abstinence-induced drug craving and heightened downstream neurotoxicity. Our study reveals female-specific neurochemical shifts in hippocampal and accumbal AMPA receptor signaling following abstinence from chronic MA consumption that may perpetuate female susceptibility to MA-induced cognitive deficits. These data demonstrate a novel molecular pathway that would exacerbate memory deficits and perpetuate an addictive phenotype in female populations following MA abuse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。