Carcinoma cells activate AMP-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment

癌细胞激活 AMP 活化蛋白激酶依赖性自噬作为对山奈酚介导的能量损伤的生存反应

阅读:4
作者:Giuseppe Filomeni, Enrico Desideri, Simone Cardaci, Ilaria Graziani, Sara Piccirillo, Giuseppe Rotilio, Maria R Ciriolo

Abstract

Kaempferol, a dietary cancer chemopreventive polyphenol, has been reported to trigger apoptosis in several tumor histotypes, but the mechanism underlying this phenomenon is not fully understood. Here, we demonstrate that in HeLa cells, kaempferol induces energetic failure due to inhibition of both glucose uptake and Complex I of the mitochondrial respiratory chain. As adaptive response, cells activate autophagy, the occurrence of which was established cytofluorometrically, upon acridine orange staining, and immunochemically, by following the increase of the autolysosome-associated form of the microtubule-associated protein light chain 3 (LC3-II). Autophagy is an early and reversible process occurring as survival mechanisms against apoptosis. Indeed, chemical inhibition of autophagy, by incubations with monensin, wortmannin, 3-methyladenine, or by silencing Atg5, significantly increases the extent of apoptosis, which takes place via the mitochondrial pathway, and shortens the time in which the apoptotic markers are detectable. We also demonstrate that autophagy depends on the early activation of the AMP-activated protein kinase (AMPK)/mTOR-mediated pathway. The overexpression of dominant negative AMPK results in a decrease of autophagic cells, a decrement of LC3-II levels, and a significant increase of apoptosis. Experiments performed with another carcinoma cell line yielded the same results, suggesting for kaempferol a unique mechanism of action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。