Erythropoietin protects neurons from apoptosis via activating PI3K/AKT and inhibiting Erk1/2 signaling pathway

促红细胞生成素通过激活 PI3K/AKT 和抑制 Erk1/2 信号通路保护神经元免于凋亡

阅读:8
作者:Wei Si, Jianyi Wang, Mei Li, Hao Qu, Ran Gu, Rui Liu, Lu Wang, Shirong Li, Xiao Hu

Abstract

The aim of this study was to explore the neuroprotective effect and the underlying mechanism of erythropoietin (EPO) on the cortical neuronal cells insulted with oxygen and glucose deprivation (OGD). Different concentrations of EPO were used to determine the anti-apoptosis effect of EPO. In addition, PI3K inhibitor LY294002 and ERK1/2 inhibitor U0126 were added to explore the underlying mechanism of EPO. Cell apoptosis rate was measured by flow cytometry. The protein expression of Bax, Bcl-2, cleaved caspase-3, AKT, p-AKT, Erk1/2 and p-Erk1/2 wasmeasured by Western blot. Our results showed that EPO alleviates OGD-induced cell apoptosis in a dose-dependent manner; the neuroprotective effect of EPO was further confirmed by the fact that EPO treatment reversed the protein expression of cleaved caspase-3, as well as the Bcl-2/Bax ratio as compared with the OGD treatment. In the mechanism part, our results demonstrated that OGD and EPO nearly had no influence on the protein expression of AKT and Erk1/2 but altered the phosphorylation of them. Specifically, OGD decreased the expression of p-AKT and increased the expression of p-Erk1/2; while, EPO treatment reversed the expression of p-AKT and p-Erk1/2 as compared with OGD treatment. Interestingly, LY294002 decreased the expression of p-AKT and attenuated the neuroprotective effect of EPO; while, U0126 decreased the expression of p-Erk1/2 and enhanced the neuroprotective effect of EPO. Our study demonstrated that EPO protects neurons against apoptosis induced by OGD, which is closely related with activation of PI3K/AKT and inactivation of Erk1/2 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。