PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities

用于组织工程应用的 PCL/琼脂糖 3D 打印支架:制造、特性和细胞活动

阅读:5
作者:Sho'leh Ghaedamini, Saeed Karbasi, Batool Hashemibeni, Ali Honarvar, Abbasali Rabiei

Background and purpose

Biomaterials, scaffold manufacturing, and design strategies with acceptable mechanical properties are the most critical challenges facing tissue engineering. Experimental approach: In this study, polycaprolactone (PCL) scaffolds were fabricated through a novel three-dimensional (3D) printing method. The PCL scaffolds were then coated with 2% agarose (Ag) hydrogel. The 3D-printed PCL and PCL/Ag scaffolds were characterized for their mechanical properties, porosity, hydrophilicity, and water absorption. The construction and morphology of the printed scaffolds were evaluated via Fourier-Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The attachment and proliferation of L929 cells cultured on the scaffolds were investigated through MTT assay on the cell culture study upon the 1st, 3rd, and 7th days. Findings/

Purpose

Biomaterials, scaffold manufacturing, and design strategies with acceptable mechanical properties are the most critical challenges facing tissue engineering. Experimental approach: In this study, polycaprolactone (PCL) scaffolds were fabricated through a novel three-dimensional (3D) printing method. The PCL scaffolds were then coated with 2% agarose (Ag) hydrogel. The 3D-printed PCL and PCL/Ag scaffolds were characterized for their mechanical properties, porosity, hydrophilicity, and water absorption. The construction and morphology of the printed scaffolds were evaluated via Fourier-Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The attachment and proliferation of L929 cells cultured on the scaffolds were investigated through MTT assay on the cell culture study upon the 1st, 3rd, and 7th days. Findings/

Results

The incorporation of Ag hydrogel with PCL insignificantly decreased the mechanical strength of the scaffold. The presence of Ag enhanced the hydrophilicity and water absorption of the scaffolds, which could positively influence their cell behavior compared to the PCL scaffolds. Regarding cell morphology, the cells on the PCL scaffolds had a more rounded shape and less cell spreading, representing poor cell attachment and cell-scaffold interaction due to the hydrophobic nature of PCL. Conversely, the cells on the PCL/Ag scaffolds were elongated with a spindle-shaped morphology indicating a positive cell-scaffold interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。