Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2

癌细胞系 HepG2 的单倍型解析和整合基因组分析

阅读:5
作者:Bo Zhou, Steve S Ho, Stephanie U Greer, Noah Spies, John M Bell, Xianglong Zhang, Xiaowei Zhu, Joseph G Arthur, Seunggyu Byeon, Reenal Pattni, Ishan Saha, Yiling Huang, Giltae Song, Dimitri Perrin, Wing H Wong, Hanlee P Ji, Alexej Abyzov, Alexander E Urban

Abstract

HepG2 is one of the most widely used human cancer cell lines in biomedical research and one of the main cell lines of ENCODE. Although the functional genomic and epigenomic characteristics of HepG2 are extensively studied, its genome sequence has never been comprehensively analyzed and higher order genomic structural features are largely unknown. The high degree of aneuploidy in HepG2 renders traditional genome variant analysis methods challenging and partially ineffective. Correct and complete interpretation of the extensive functional genomics data from HepG2 requires an understanding of the cell line's genome sequence and genome structure. Using a variety of sequencing and analysis methods, we identified a wide spectrum of genome characteristics in HepG2: copy numbers of chromosomal segments at high resolution, SNVs and Indels (corrected for aneuploidy), regions with loss of heterozygosity, phased haplotypes extending to entire chromosome arms, retrotransposon insertions and structural variants (SVs) including complex and somatic genomic rearrangements. A large number of SVs were phased, sequence assembled and experimentally validated. We re-analyzed published HepG2 datasets for allele-specific expression and DNA methylation and assembled an allele-specific CRISPR/Cas9 targeting map. We demonstrate how deeper insights into genomic regulatory complexity are gained by adopting a genome-integrated framework.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。