Electrical and dielectric characteristics of molybdenum dioxide nanoparticles for high-performance electrocatalysis

用于高性能电催化的二氧化钼纳米粒子的电学和介电特性

阅读:4
作者:Ibrahim Soliman, Bijaya Basnet, Sulata K Sahu, Dhruba Panthi, Yanhai Du

Abstract

As an attempt to improve the catalytic processes in different electrochemical systems, molybdenum dioxide nanoparticles were prepared using the hydrothermal method, and their electrical and dielectric properties were investigated. The nanoparticles were polycrystalline with an orthorhombic structure. AC electrical transport properties of the pressed disc were conducted over a temperature range of 303-423 K and a frequency range of 42-5 × 106 Hz. The AC conductivity follows Jonscher's universal dynamic law, and it has been determined that correlated barrier hopping (CBH) is the primary conduction mechanism. The maximum barrier height (WM<math><mrow><msub><mi>W</mi><mi>M</mi></msub></mrow></math>) was found to be 0.92 eV. The low activation energy showed that hopping conduction is the dominant mechanism of transporting current. The dielectric parameters were analyzed using both complex permittivity and complex electric modulus, with a focus on how they vary with temperature and frequency. At relatively high temperatures and low frequencies, the dielectric parameters showed a high-frequency dependence. The dielectric modulus showed that relaxation peaks move towards lower frequency when temperature increases. The dielectric relaxation activation energy, Δ Eω<math><mrow><msub><mi>E</mi><mi>ω</mi></msub></mrow></math> was determined to be 0.31 eV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。