The effect of local dynamics of Atto 390-labeled lysozyme on fluorescence anisotropy modeling

Atto 390 标记溶菌酶局部动力学对荧光各向异性建模的影响

阅读:7
作者:Jeremiah J Babcock, Lorenzo Brancaleon

Abstract

Fluorescence anisotropy decay is a popular optical technique to study the structure, size, shape, and even functions of biomolecules. The method measures the time dependence of the depolarization of a fluorophore and is therefore sensitive to the changes in the rotational motion (e.g., aggregation and binding) or changes in the mobility of segments of biopolymers (such as the ones associated with tertiary structure changes). Fluorescence anisotropy decay often requires the use of fluorescent dyes that need to be covalently attached to the biomolecule. The location of the attachment on the biomolecule (e.g., a protein) and the linker used, affect the mobility of the dye and its anisotropy decay. With this study we have combined the experimental data with molecular dynamic simulations to offer a more correct interpretation of the fluorescence anisotropy decay of a popular fluorescent dye (Atto 390) attached to the N-terminus of Hen Egg White Lysozyme (HEWL). Our model showed how the use of relatively simple molecular dynamics computation to simulate the motion of the dye, provide a model to interpret the experimental fluorescence anisotropy decay that yields a better estimate of the hydrodynamic radius of HEWL. The improvement is provided by a more detailed description of the segmental motion of the dye attached to the protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。