Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity

人类癌细胞中的神经纤毛蛋白-1拮抗剂可抑制迁移并增强化学敏感性

阅读:5
作者:H Jia, L Cheng, M Tickner, A Bagherzadeh, D Selwood, I Zachary

Background

Neuropilin-1 (NRP1) is a non-tyrosine kinase receptor for vascular endothelial growth factor (VEGF) recently implicated in tumour functions.

Conclusions

These findings indicate that NRP1 is important for tumour cell migration and adhesion, and that NRP1 antagonism enhances chemosensitivity, at least in part, by interfering with integrin-dependent survival pathways. A major implication of this study is that therapeutic strategies targeting NRP1 in tumour cells may be particularly useful in combination with other drugs for combating tumour survival, growth, and metastatic spread independently of an antiangiogenic effect of blocking NRP1.

Methods

In this study we used a specific antagonist of VEGF binding to the NRP1 b1 domain, EG3287, to investigate the functional roles of NRP1 in human carcinoma cell lines, non-small-cell lung A549, kidney ACHN, and prostate DU145 cells expressing NRP1, and the underlying mechanisms involved.

Results

EG3287 potently displaced the specific binding of VEGF to NRP1 in carcinoma cell lines and significantly inhibited the migration of A549 and ACHN cells. Neuropilin-1 downregulation by siRNA also decreased cell migration. EG3287 reduced the adhesion of A549 and ACHN cells to extracellular matrix (ECM), and enhanced the anti-adhesive effects of a beta1-integrin function-blocking antibody. EG3287 increased the cytotoxic effects of the chemotherapeutic agents 5-FU, paclitaxel, or cisplatin on A549 and DU145 cells, through inhibition of integrin-dependent cell interaction with the ECM. Conclusions: These findings indicate that NRP1 is important for tumour cell migration and adhesion, and that NRP1 antagonism enhances chemosensitivity, at least in part, by interfering with integrin-dependent survival pathways. A major implication of this study is that therapeutic strategies targeting NRP1 in tumour cells may be particularly useful in combination with other drugs for combating tumour survival, growth, and metastatic spread independently of an antiangiogenic effect of blocking NRP1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。