Cellulose Acetate Phthalate and Antiretroviral Nanoparticle Fabrications for HIV Pre-Exposure Prophylaxis

醋酸纤维素邻苯二甲酸酯和抗逆转录病毒纳米颗粒的制备用于 HIV 暴露前预防

阅读:3
作者:Subhra Mandal, Karl Khandalavala, Rachel Pham, Patrick Bruck, Marisa Varghese, Andrew Kochvar, Ashley Monaco, Pavan Kumar Prathipati, Christopher Destache, Annemarie Shibata

Abstract

To adequately reduce new HIV infections, development of highly effective pre-exposure prophylaxis (PrEP) against HIV infection in women is necessary. Cellulose acetate phthalate (CAP) is a pH sensitive polymer with HIV-1 entry inhibitory properties. Dolutegravir (DTG) is an integrase strand transfer inhibitor with potent antiretroviral activity. DTG delivered in combination with CAP may significantly improve current PrEP against HIV. In the present study the development of DTG-loaded CAP nanoparticles incorporated in thermosensitive (TMS) gel at vaginal pH 4.2 and seminal fluid pH 7.4 is presented as proof-of-concept for improved PrEP. Water-oil-in-water homogenization was used to fabricate DTG-loaded CAP nanoparticles (DTG-CAP-NPs). Size, polydispersity, and morphological analyses illustrate that DTG-CAP-NPs were smooth and spherical, ≤200 nm in size, and monodispersed with a polydispersity index PDI ≤ 0.2. The drug encapsulation (EE%) and release profile of DTG-CAP-NPs was determined by HPLC analysis. The EE% of DTG in DTG-CAP-NPs was evaluated to be ∼70%. The thermal sensitivity of the TMS gel was optimized and the pH dependency was evaluated by rheological analysis. DTG release studies in TMS gel revealed that DTG-CAP-NPs were stable in TMS gel at pH 4.2 while DTG-CAP-NPs in TMS gel at pH 7.4 rapidly release DTG (≥80% release within 1 h). Cytotoxicity studies using vaginal cell lines revealed that DTG-CAP-NPs were relatively non-cytotoxic at concentration <1 μg/mL. Confocal microscopic studies illustrate that ≥98% cells retained DTG-CAP-NPs intracellularly over seven days. Antiretroviral drug loaded nanocellulose fabrications in TMS gel delivered intravaginally may enhance both microbicidal and antiretroviral drug efficacy and may present a novel option for female PrEP against HIV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。