Csnk1a1 inhibition modulates the inflammatory secretome and enhances response to radiotherapy in glioma

Csnk1a1 抑制可调节炎症分泌组并增强胶质瘤对放射治疗的反应

阅读:6
作者:Guanzheng Liu, Huan Li, Wanhong Zhang, Jiefeng Yu, Xu Zhang, Runqiu Wu, Mingshan Niu, Xuejiao Liu, Rutong Yu

Abstract

Glioblastoma multiforme (GBM), a fatal brain tumour with no available targeted therapies, has a poor prognosis. At present, radiotherapy is one of the main methods to treat glioma, but it leads to an obvious increase in inflammatory factors in the tumour microenvironment, especially IL-6 and CXCL1, which plays a role in tumour to resistance radiotherapy and tumorigenesis. Casein kinase 1 alpha 1 (CK1α) (encoded on chromosome 5q by Csnk1a1) is considered an attractive target for Tp53 wild-type acute myeloid leukaemia (AML) treatment. In this study, we evaluated the anti-tumour effect of Csnk1a1 suppression in GBM cells in vitro and in vivo. We found that down-regulation of Csnk1a1 or inhibition by D4476, a Csnk1a1 inhibitor, reduced GBM cell proliferation efficiently in both Tp53 wild-type and Tp53-mutant GBM cells. On the contrary, overexpression of Csnk1a1 promoted cell proliferation and colony formation. Csnk1a1 inhibition improved the sensitivity to radiotherapy. Furthermore, down-regulation of Csnk1a1 reduced the production and secretion of pro-inflammatory factors. In the preclinical GBM model, treatment with D4476 significantly inhibited the increase in pro-inflammatory factors caused by radiotherapy and improved radiotherapy sensitivity, thus inhibiting tumour growth and prolonging animal survival time. These results suggest targeting Csnk1a1 exert an anti-tumour role as an inhibitor of inflammatory factors, providing a new strategy for the treatment of glioma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。