Optical Redox Imaging of Ex Vivo Hippocampal Tissue Reveals Age-Dependent Alterations in the 5XFAD Mouse Model of Alzheimer's Disease

离体海马组织的光学氧化还原成像揭示了阿尔茨海默病 5XFAD 小鼠模型中的年龄依赖性改变

阅读:5
作者:He N Xu, Sarah Gourmaud, Allison Podsednik, Xiaofan Li, Huaqing Zhao, Frances E Jensen, Delia M Talos, Lin Z Li

Abstract

A substantial decline in nicotinamide adenine dinucleotide (NAD) has been reported in brain tissue homogenates or neurons isolated from Alzheimer's disease (AD) models. NAD, together with flavin adenine dinucleotide (FAD), critically supports energy metabolism and maintains mitochondrial redox homeostasis. Optical redox imaging (ORI) of the intrinsic fluorescence of reduced NAD (NADH) and oxidized FAD yields cellular redox and metabolic information and provides biomarkers for a variety of pathological conditions. However, its utility in AD has not been characterized at the tissue level. We performed ex vivo ORI of freshly dissected hippocampi from a well-characterized AD mouse model with five familial Alzheimer's disease mutations (5XFAD) and wild type (WT) control littermates at various ages. We found (1) a significant increase in the redox ratio with age in the hippocampi of both the WT control and the 5XFAD model, with a more prominent redox shift in the AD hippocampi; (2) a higher NADH in the 5XFAD versus WT hippocampi at the pre-symptomatic age of 2 months; and (3) a negative correlation between NADH and Aβ42 level, a positive correlation between Fp and Aβ42 level, and a positive correlation between redox ratio and Aβ42 level in the AD hippocampi. These findings suggest that the ORI can be further optimized to conveniently study the metabolism of freshly dissected brain tissues in animal models and identify early AD biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。