Diallyl disulfide attenuates pyroptosis via NLRP3/Caspase-1/IL-1β signaling pathway to exert a protective effect on hypoxic-ischemic brain damage in neonatal rats

二烯丙基二硫化物通过NLRP3 / Caspase-1 / IL-1β信号通路减弱细胞焦亡对新生大鼠缺氧缺血性脑损伤具有保护作用

阅读:6
作者:Yihui Zheng, Tingyu Zhu, Binwen Chen, Yu Fang, Yiqing Wu, Xiaoli Feng, Mengdan Pang, Hongzeng Wang, Jianghu Zhu, Zhenlang Lin

Abstract

Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain disease caused by hypoxia in neonates. It is one of the leading causes of neonatal death in the perinatal period, as well as disability beyond the neonatal period. Due to the lack of a unified and comprehensive treatment strategy for HIE, research into its pathogenesis is essential. Diallyl disulfide (DADS) is an allicin extract, with detoxifying, antibacterial, and cardiovascular disease protective effects. This study aimed to determine whether DADS can alleviate HIE induced brain damage in rats and oxygen-glucose deprivation (OGD)-induced pyroptosis in PC12 cells, as well as whether it can inhibit pyroptosis via the NLRP3/Caspase-1/IL-1β signaling pathway. In vivo, DADS significantly reduced the cerebral infarction volume, alleviated inflammatory reaction, reduced astrocyte activation, promoted tissue structure recovery, improved pyroptosis caused by HIE and improved the prognosis following HI injury. In vitro findings indicated that DADS increased cell activity, decreased LDH activity and reduced the expression of pyroptosis-related proteins, including IL-1β, IL-18, and certain inflammatory factors in PC12 cells caused by OGD. Mechanistically, DADS inhibited pyroptosis and protected against HIE via the NLRP3/Caspase-1/IL-1β pathway. The specific inhibitor of caspase-1, VX-765, inhibited caspase-1 activation, and IL-1β expression was determined. Additionally, the overexpression of NLRP3 reversed the protective effect of allicin against OGD-induced pyroptosis. In conclusion, these findings demonstrated that DADS inhibits the NLRP3/Caspase-1/IL-1β signaling pathway and decreases HI brain damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。