Integrative analysis of miRNA in cartilage-derived extracellular vesicles and single-cell RNA-seq profiles in knee osteoarthritis

膝关节骨关节炎软骨来源细胞外囊泡中 miRNA 和单细胞 RNA 测序谱的综合分析

阅读:6
作者:Yujie Ning, Feiyu Zhang, Shujin Li, Chaowei Wang, Yifan Wu, Sijie Chen, Yanli Liu, Feihong Chen, Xiong Guo, Xi Wang, Hongmou Zhao

Abstract

Extracellular vesicular miRNAs (EV-miRNAs) play essential roles as intercellular communication molecules in knee Osteoarthritis (OA). We isolated cartilage-derived extracellular vesicles (EVs), to perform miRNA sequencing, which revealed EV-miRNA profiles and identified differentially expressed miRNAs (DE-miRNAs) between cartilage injury and cartilage non-injury groups. The target genes of known and novel DE-miRNAs were predicted with multiMiR package in 14 miRNA-target interaction databases. Meanwhile, single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in knee OA. Then we performed comparative analysis between target genes of the cartilage-derived EV-DE-miRNAs target genes and cluster-specific maker genes of characteristic chondrocyte clusters. Finally, the functional analysis of the cartilage-derived EVs DE-miRNA target genes and cluster-specific marker genes of each cell population were performed. The EV-miRNA profile analysis identified 13 DE-miRNAs and 7638 target genes. ScRNA-seq labelled seven clusters by cell type according to the expression of multiple characteristic markers. The results identified 735, 184, 303 and 879 common genes between EV-DE-miRNA target genes and cluster-specific marker genes in regulatory chondrocytes (RegCs), fibrocartilage chondrocytes (FC), prehypertrophic chondrocytes (PreHTCs) and mitochondrial chondrocytes (MTC), respectively. We firstly integrated the association between the cartilage-derived EV-DE-miRNA target genes and distinguished cluster-specific marker genes of each chondrocyte clusters. KEGG pathway analysis further identified that the DE-miRNAs target genes were significantly enriched in MAPK signaling pathway, Focal adhesion and FoxO signaling pathway. Our results provided some new insights into cartilage injury and knee OA pathogenesis which could improve the new diagnosis and treatment methods for OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。