Conversion of adult human fibroblasts into neural precursor cells using chemically modified mRNA

利用化学修饰的 mRNA 将成人人类成纤维细胞转化为神经前体细胞

阅读:4
作者:Bronwen Connor, Erin Firmin, Amy McCaughey-Chapman, Ruth Monk, Kevin Lee, Sophie Liot, Johannes Geiger, Carsten Rudolph, Kathryn Jones

Abstract

Direct reprogramming offers a unique approach by which to generate neural lineages for the study and treatment of neurological disorders. Our objective is to develop a clinically viable reprogramming strategy to generate neural precursor cells for the treatment of neurological disorders through cell replacement therapy. We initially developed a method for directly generating neural precursor cells (iNPs) from adult human fibroblasts by transient expression of the neural transcription factors, SOX2 and PAX6 using plasmid DNA. This study advances these findings by examining the use of chemically modified mRNA (cmRNA) for direct-to-iNP reprogramming. Chemically modified mRNA has the benefit of being extremely stable and non-immunogenic, offering a clinically suitable gene delivery system. The use of SOX2 and PAX6 cmRNA resulted in high co-transfection efficiency and cell viability compared with plasmid transfection. Neural positioning and fate determinant genes were observed throughout reprogramming with ion channel and synaptic marker genes detected during differentiation. Differentiation of cmRNA-derived iNPs generated immature GABAergic or glutamatergic neuronal phenotypes in conjunction with astrocytes. This represents the first time a cmRNA approach has been used to directly reprogram adult human fibroblasts to iNPs, potentially providing an efficient system by which to generate human neurons for both research and clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。