Transcriptome-wide stability analysis uncovers LARP4-mediated NFκB1 mRNA stabilization during T cell activation

转录组稳定性分析揭示 T 细胞活化过程中 LARP4 介导的 NFκB1 mRNA 稳定

阅读:6
作者:Yi Tian, Zhouhao Zeng, Xiang Li, Yiyin Wang, Runsen Chen, Sandy Mattijssen, Sergei Gaidamakov, Yuzhang Wu, Richard J Maraia, Weiqun Peng, Jun Zhu

Abstract

T cell activation is a well-established model for studying cellular responses to exogenous stimulation. Motivated by our previous finding that intron retention (IR) could lead to transcript instability, in this study, we performed BruChase-Seq to experimentally monitor the expression dynamics of nascent transcripts in resting and activated CD4+ T cells. Computational modeling was then applied to quantify the stability of spliced and intron-retained transcripts on a genome-wide scale. Beyond substantiating that intron-retained transcripts were considerably less stable than spliced transcripts, we found a global stabilization of spliced mRNAs upon T cell activation, although the stability of intron-retained transcripts remained relatively constant. In addition, we identified that La-related protein 4 (LARP4), an RNA-binding protein (RBP) known to enhance mRNA stability, was involved in T cell activation-dependent mRNA stabilization. Knocking out Larp4 in mice destabilized Nfκb1 mRNAs and reduced secretion of interleukin-2 (IL2) and interferon-gamma (IFNγ), two factors critical for T cell proliferation and function. We propose that coordination between splicing regulation and mRNA stability may provide a novel paradigm to control spatiotemporal gene expression during T cell activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。