Predicting lameness in dairy cattle using untargeted liquid chromatography-mass spectrometry-based metabolomics and machine learning

使用基于非靶向液相色谱-质谱的代谢组学和机器学习预测奶牛跛足

阅读:4
作者:Laura V Randall, Dong-Hyun Kim, Salah M A Abdelrazig, Nicola J Bollard, Heather Hemingway-Arnold, Robert M Hyde, Jake S Thompson, Martin J Green

Abstract

Lameness in dairy cattle is a highly prevalent condition that impacts on the health and welfare of dairy cows. Prompt detection and implementation of effective treatment is important for managing lameness. However, major limitations are associated with visual assessment of lameness, which is the most commonly used method to detect lameness. The aims of this study were to investigate the use of metabolomics and machine learning to develop novel methods to detect lameness. Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) alongside machine learning models and a stability selection method were utilized to evaluate the predictive accuracy of differences in the metabolomics profile of first-lactation dairy cows before (during the transition period) and at the time of lameness (based on visual assessment using the 0-3 scale of the Agriculture and Horticulture Development Board). Urine samples were collected from 2 cohorts of dairy heifers and stored at -86°C before analysis using LC-MS. Cohort 1 (n = 90) cows were recruited as current first-lactation cows with weekly mobility scores recorded over a 4-mo timeframe, from which newly lame and nonlame cows were identified. Cohort 2 (n = 30) cows were recruited within 3 wk before calving, and lameness events (based on mobility score) were recorded through lactation until a minimum of 70 d in milk (DIM). All cows were matched paired by DIM ± 14 d. The median DIM at lameness identification was 187.5 and 28.5 for cohort 1 and 2, respectively. The best performing machine learning models predicted lameness at the time of lameness with an accuracy of between 81 and 82%. Using stability selection, the prediction accuracy at the time of lameness was 80 to 81%. For samples collected before and after calving, the best performing machine learning model predicted lameness with an accuracy of 71 and 75%, respectively. The findings from this study demonstrate that untargeted LC-MS profiling combined with machine learning methods can be used to predict lameness as early as before calving and before observable changes in gait in first-lactation dairy cows. The methods also provide accuracies for detecting lameness at the time of observable changes in gait of up to 82%. The findings demonstrate that these methods could provide substantial advancements in the early prediction and prevention of lameness risk. Further external validation work is required to confirm these findings are generalizable; however, this study provides the basis from which future work can be conducted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。