Stretchable piezoelectric biocrystal thin films

可拉伸压电生物晶体薄膜

阅读:8
作者:Jun Li, Corey Carlos, Hao Zhou, Jiajie Sui, Yikai Wang, Zulmari Silva-Pedraza, Fan Yang, Yutao Dong, Ziyi Zhang, Timothy A Hacker, Bo Liu, Yanchao Mao, Xudong Wang

Abstract

Stretchability is an essential property for wearable devices to match varying strains when interfacing with soft tissues or organs. While piezoelectricity has broad application potentials as tactile sensors, artificial skins, or nanogenerators, enabling tissue-comparable stretchability is a main roadblock due to the intrinsic rigidity and hardness of the crystalline phase. Here, an amino acid-based piezoelectric biocrystal thin film that offers tissue-compatible omnidirectional stretchability with unimpaired piezoelectricity is reported. The stretchability was enabled by a truss-like microstructure that was self-assembled under controlled molecule-solvent interaction and interface tension. Through the open and close of truss meshes, this large scale biocrystal microstructure was able to endure up to 40% tensile strain along different directions while retained both structural integrity and piezoelectric performance. Built on this structure, a tissue-compatible stretchable piezoelectric nanogenerator was developed, which could conform to various tissue surfaces, and exhibited stable functions under multidimensional large strains. In this work, we presented a promising solution that integrates piezoelectricity, stretchability and biocompatibility in one material system, a critical step toward tissue-compatible biomedical devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。