Treatment with bone maturation and average lifespan of HPP model mice by AAV8-mediated neonatal gene therapy via single muscle injection

AAV8 介导的单次肌肉注射新生儿基因治疗对 HPP 模型小鼠骨骼成熟度和平均寿命的治疗

阅读:5
作者:Tae Matsumoto, Koichi Miyake, Noriko Miyake, Osamu Iijima, Kumi Adachi, Sonoko Narisawa, José Luis Millán, Hideo Orimo, Takashi Shimada

Abstract

Hypophosphatasia (HPP) is an inherited skeletal disease characterized by defective bone and tooth mineralization due to a deficiency in tissue-nonspecific alkaline phosphatase (TNALP). Patients with the severe infantile form of HPP may appear normal at birth, but their prognosis is very poor. To develop a practical gene therapy for HPP, we endeavored to phenotypically correct TNALP knockout (Akp2 -/- ) mice through adeno-associated virus type 8 (AAV8) vector-mediated, muscle-directed, TNALP expression. Following treatment of neonatal Akp2 -/- mice with a single intramuscular injection of ARU-2801 (AAV8-TNALP-D10-vector) at 1.0 × 1012 vector genomes/body, high plasma ALP levels (19.38 ± 5.02 U/mL) were detected for up to 18 months, and computed tomography analysis showed mature bone mineralization. Histochemical staining for ALP activity in the knee joint revealed ALP activity on the surface of the endosteal bone of mice. Throughout their lives, the surviving treated Akp2 -/- mice exhibited normal physical activity and a healthy appearance, whereas untreated controls died within 3 weeks. No ectopic calcification or abnormal calcium metabolism was detected in the treated mice. These findings suggest that ARU-2801-mediated neonatal intramuscular gene therapy is both safe and effective, and that this strategy could be a practical option for treatment of the severe infantile form of HPP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。