Genetic landscape and ligand-dependent activation of sonic hedgehog-Gli1 signaling in chordomas: a novel therapeutic target

脊索瘤的遗传图谱和音猬因子-Gli1 信号的配体依赖性激活:一种新的治疗靶点

阅读:5
作者:Chenlong Yang, Lei Yong, Chen Liang, Yan Li, Yunlong Ma, Feng Wei, Liang Jiang, Hua Zhou, Guanping He, Xiaoyu Pan, Bao Hai, Jian Wu, Yulun Xu, Zhongjun Liu, Xiaoguang Liu

Abstract

Chordoma, a rare neoplasm derived from intraosseous notochordal remnants, is unresponsive to conventional chemotherapy and radiotherapy. Sonic Hedgehog (Shh) is a crucial fetal notochord-secreted morphogen that directs notochordal development. The aim of this study was to determine the functional roles and therapeutic potential of Shh-Gli1 signaling in chordomas. Tissue samples and clinical profiles were collected from 42 patients with chordoma. The chordoma cell lines U-CH1 and MUG-Chor1 were used for functional experiments. Shh-Gli1 signaling pathway genetic alterations were screened, and the functions of the identified novel variants were analyzed using in silico analyses, real-time quantitative PCR, and minigene assays. Ligand-dependent Shh-Gli1 signaling activation was assessed using single- and dual-label immunostaining, western blot analysis, and a Shh-responsive Gli-luciferase reporter assay. The small-molecule inhibitor vismodegib was used to target Shh-Gli1 signaling in vitro and in vivo. Overall, 44 genetic alterations were identified, including four novel variants (c.67_69dupCTG in SMO, c.-6_-4dupGGC and c.3306 + 83_3306 + 84insG in PTCH1, and c.183-67_183-66delinsA in SUFU). Shh, PTCH1, SMO, SUFU, and Gli1 were extensively expressed in chordomas, and higher Gli1 expression correlated with poorer prognosis. A luciferase reporter assay and dual-label immunostaining indicated the occurrence of juxtacrine ligand-dependent Shh-Gli1 signaling activation. Vismodegib significantly inhibited cell proliferation and induced apoptosis and G1/S cell cycle arrest. In vivo investigation demonstrated that vismodegib effectively inhibited chordoma xenograft growth. This current preclinical evidence elucidates the therapeutic potential of Shh-Gli1 signaling pathway targeting for chordoma treatment. Vismodegib may be a promising targeted agent, and further clinical trials are warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。