Potential involvement of F0F1-ATP(synth)ase and reactive oxygen species in apoptosis induction by the antineoplastic agent erucylphosphohomocholine in glioblastoma cell lines : a mechanism for induction of apoptosis via the 18 kDa mitochondrial translocator protein

抗肿瘤药物 erucylphosphocholine 在胶质母细胞瘤细胞系中诱导细胞凋亡时可能涉及 F0F1-ATP(合)酶和活性氧:通过 18 kDa 线粒体转运蛋白诱导细胞凋亡的机制

阅读:5
作者:Leo Veenman, Julia Alten, Karen Linnemannstöns, Yulia Shandalov, Sivan Zeno, Max Lakomek, Moshe Gavish, Wilfried Kugler

Abstract

Erucylphosphohomocholine (ErPC3, Erufosine) was reported previously to induce apoptosis in otherwise highly apoptosis-resistant malignant glioma cell lines while sparing their non-tumorigenic counterparts. We also previously found that the mitochondrial 18 kDa Translocator Protein (TSPO) is required for apoptosis induction by ErPC3. These previous studies also suggested involvement of reactive oxygen species (ROS). In the present study we further investigated the potential involvement of ROS generation, the participation of the mitochondrial respiration chain, and the role of the mitochondrial F(O)F(1)-ATP(synth)ase in the pro-apoptotic effects of ErPC3 on U87MG and U118MG human glioblastoma cell lines. For this purpose, cells were treated with the ROS chelator butylated hydroxyanisole (BHA), the mitochondrial respiration chain inhibitors rotenone, antimycin A, myxothiazol, and the uncoupler CCCP. Also oligomycin and piceatannol were studied as inhibitors of the F(O) and F(1) subunits of the mitochondrial F(O)F(1)-ATP(synth)ase, respectively. BHA was able to attenuate apoptosis induction by ErPC3, including mitochondrial ROS generation as determined with cardiolipin oxidation, as well as collapse of the mitochondrial membrane potential (Deltapsi(m)). Similarly, we found that oligomycin attenuated apoptosis and collapse of the Deltapsi(m), normally induced by ErPC3, including the accompanying reductions in cellular ATP levels. Other inhibitors of the mitochondrial respiration chain, as well as piceatannol, did not show such effects. Consequently, our findings strongly point to a role for the F(O) subunit of the mitochondrial F(O)F(1)-ATP(synth)ase in ErPC3-induced apoptosis and dissipation of Deltapsi(m) as well as ROS generation by ErPC3 and TSPO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。