Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation

隐形 CD44 靶向透明质酸超分子纳米组装体用于阿霉素输送:探讨非共价聚乙二醇化程度对细胞摄取和血液长循环的影响

阅读:4
作者:Xiaopeng Han, Zhenbao Li, Jin Sun, Cong Luo, Lin Li, Yuhai Liu, Yuqian Du, Shuhong Qiu, Xiaoyu Ai, Chunnuan Wu, He Lian, Zhonggui He

Abstract

Stealth active targeting nanoparticles (NPs) usually include two types of ligand sites: ligand anchored on distal ends of the polyethylene glycol (PEG) and ligand buried under pegylated layer. The latter typical case is hyaluronic acid (HA)-based NPs; however, there is little information available for the latter NPs about effect of the optimal density of surface PEG coating on the blood circulation time, cellular uptake and in vivo anticancer activity. Thus, in this study, in order to optimize the anticancer effects of HA-based NPs, we focus on how uncovalent pegylation degree modulates blood circulation time and cellular uptake of HA-based NPs. We firstly designed a new double-hydrophilic copolymer by conjugating HP-β-cyclodextrin with HA, and this carrier was further pegylated with adamantyl-peg (ADA-PEG) to form inclusion complex HA-HPCD/ADA-PEG, termed as HCPs. The supramolecular nanoassemblies were fabricated by host-guest and polar interactions between HCPs and doxorubicin (Dox), with vitamin E succinate (VES) being a nanobridge. Despite the active recognition between HA and CD44 receptor, the cellular uptake and targeting efficiency of HA-NPs decreased with the increasing peg density, demonstrating HA was partly buried by high density peg coating. However, the high density of peg coating was beneficial to long circulation time, tumor biodistribution and anticancer activity in vivo. NPs with 5% peg coating had the optimal cellular targeting efficiency in vitro and anticancer effects in vivo. The findings suggest that balancing long circulation property and cellular uptake is important to achieve the optimal antitumor efficacy for pegylated HA-based NPs, and that PEG coating densities cannot be extended beyond a certain density for shielding effect without compromising the efficacy of hyaluronic acid targeted delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。