Rigid-body motion is the main source of diffuse scattering in protein crystallography

刚体运动是蛋白质晶体学中弥散散射的主要来源

阅读:8
作者:T de Klijn, A M M Schreurs, L M J Kroon-Batenburg

Abstract

The origin of diffuse X-ray scattering from protein crystals has been the subject of debate over the past three decades regarding whether it arises from correlated atomic motions within the molecule or from rigid-body disorder. Here, a supercell approach to modelling diffuse scattering is presented that uses ensembles of molecular models representing rigid-body motions as well as internal motions as obtained from ensemble refinement. This approach allows oversampling of Miller indices and comparison with equally oversampled diffuse data, thus allowing the maximum information to be extracted from experiments. It is found that most of the diffuse scattering comes from correlated motions within the unit cell, with only a minor contribution from longer-range correlated displacements. Rigid-body motions, and in particular rigid-body translations, make by far the most dominant contribution to the diffuse scattering, and internal motions give only a modest addition. This suggests that modelling biologically relevant protein dynamics from diffuse scattering may present an even larger challenge than was thought.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。