Plerixafor stimulates adhesive activity and endothelial regeneration of endothelial progenitor cells via elevating CXCR7 expression

普乐沙福通过提高 CXCR7 表达来刺激内皮祖细胞的粘附活性和内皮再生

阅读:10
作者:Chunyu Jiang, Ruiting Li, Xu Ma, Hui Hu, Liming Wei, Jungong Zhao

Aims

To assess the effects of plerixafor on function and endothelial regeneration of endothelial progenitor cells (EPCs).

Conclusions

Plerixafor can positively regulate adhesion capacity of EPCs to HUVECs via elevating the expression level of CXCR7 and stimulating LFA-1 and VLA-4 molecules activation. Treatment with plerixafor accelerated re-endothelialization and inhibited neointimal hyperplasia after endoth elial injury, indicating that it can to be used for endothelial regeneration.

Methods

The proliferation and adhesion capacity of EPCs were evaluated in vitro. Furthermore, the expression levels of CXC chemokine receptor-7 (CXCR7) were detected before and after treatment with plerixafor. The CXCR7 expression of EPCs was knocked-down by RNA interference to evaluate the role of CXCR7 in regulating function of EPCs. A rat carotid artery injury model was established to assess the influences of plerixafor on endothelial regeneration.

Results

Plerixafor stimulated adhesion capacity of EPCs, associating with upregulation of CXCR7 and activation of LFA-1 and VLA-4 molecules. Knockdown of CXCR7 slightly impaired proliferation capacity but significantly attenuated adhesion capacity of EPCs. Plerixafor facilitated endothelial repair at 7 days, while reduced neointimal hyperplasia at 7 and 14 days via recruiting more EPCs participating in endothelial reparation. Conclusions: Plerixafor can positively regulate adhesion capacity of EPCs to HUVECs via elevating the expression level of CXCR7 and stimulating LFA-1 and VLA-4 molecules activation. Treatment with plerixafor accelerated re-endothelialization and inhibited neointimal hyperplasia after endoth elial injury, indicating that it can to be used for endothelial regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。