Human endometrial regenerative cells attenuate renal ischemia reperfusion injury in mice

人子宫内膜再生细胞可减轻小鼠肾脏缺血再灌注损伤

阅读:3
作者:Peng Sun ,Jian Liu ,Wenwen Li ,Xiaoxi Xu ,Xiangying Gu ,HongYue Li ,Hongqiu Han ,Caigan Du ,Hao Wang

Abstract

Background: Endometrial regenerative cells (ERCs) is an attractive novel type of adult mesenchymal stem cells that can be non-invasively obtained from menstrual blood and are easily replicated at a large scale without tumorigenesis. We have previously reported that ERCs exhibit unique immunoregulatory properties in experimental studies in vitro and in vivo. In this study, the protective effects of ERCs on renal ischemia-reperfusion injury (IRI) were examined. Methods: Renal IRI in C57BL/6 mice was induced by clipping bilateral renal pedicles for 30 min, followed by reperfusion for 48 h. ERCs were isolated from healthy female menstrual blood, and were injected (1 million/mouse, i.v.) into mice 2 h prior to IRI induction. Renal function, pathological and immunohistological changes, cell populations and cytokine profiles were evaluated after 48 h of renal reperfusion. Results: Here, we showed that as compared to untreated controls, administration of ERCs effectively prevented renal damage after IRI, indicated by better renal function and less pathological changes, which were associated with increased serum levels of IL-4, but decreased levels of TNF-α, IFN-γ and IL-6. Also, ERC-treated mice displayed significantly less splenic and renal CD4(+) and CD8(+) T cell populations, while the percentage of splenic CD4(+)CD25(+) regulatory T cells and infiltrating M2 macrophages in the kidneys were significantly increased in ERC-treated mice. Conclusions: This study demonstrates that the novel anti-inflammatory and immunoregulatory effects of ERCs are associated with attenuation of renal IRI, suggesting that the unique features of ERCs may make them a promising candidate for cell therapies in the treatment of ischemic acute kidney injury in patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。