Identification of novel biomarkers for preeclampsia on the basis of differential expression network analysis

基于差异表达网络分析鉴定先兆子痫的新型生物标志物

阅读:2
作者:Yufang Wu ,Xiuhua Fu ,Lin Wang

Abstract

Preeclampsia (PE) is a severe pregnancy complication, which is a leading cause of maternal and fetal mortality. The present study aimed to screen potential biomarkers for the diagnosis and prediction of PE and to investigate the underlying mechanisms of PE development based on the differential expression network (DEN). The microarray datasets E-GEOD-6573 and E-GEOD-48424 were downloaded from the European Bioinformatics Institute database. Differentially expressed genes (DEGs) between the PE and normal groups were screened by Significant Analysis of Microarrays with the cutoff value of a |log2 fold change| of >2, and a false discovery rate of <0.05. The DEN was constructed based on the differential and non-differential interactions observed. In addition, genes with higher connectivity degrees in the DEN were identified on the basis of centrality analysis, while disease genes were also extracted from the DEN. In order to understand the functional roles of genes in DEN, Gene Ontology (GO) and pathway enrichment analyses were performed. The present results indicated that a total of 225 genes were considered as DEGs in the PE group, while 466 nodes and 314 gene interactions were involved in the DEN. Among these 466 nodes, 4 nodes with higher degrees were identified, including ubiquitin C (UBC), small ubiquitin-like modifier 1 (SUMO1), SUMO2 and RAD21 homolog (S. pombe) (RAD21). Notably, UBC was also found to be a disease gene. UBC, RAD21, SUMO2 and SUMO1 were markedly enriched in the regulation of programmed cell death, as well as in the regulation of apoptosis, cell cycle and chromosomal part. In conclusion, based on these results, we suggest that UBC, RAD21, SUMO2 and SUMO1 may be reliable biomarkers for the prediction of the development and progression of PE. Keywords: differential expression network; differentially expressed genes; disease gene; preeclampsia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。