Mycobacteriophage SWU1 gp39 can potentiate multiple antibiotics against Mycobacterium via altering the cell wall permeability

分枝杆菌噬菌体SWU1 gp39可通过改变细胞壁通透性增强多种抗生素对分枝杆菌的抗菌活性。

阅读:2
作者:Qiming Li ,Mingliang Zhou ,Xiangyu Fan ,Jianlong Yan ,Weimin Li ,Jianping Xie

Abstract

M. tuberculosis is intrinsically tolerant to many antibiotics largely due to the imperviousness of its unusual mycolic acid-containing cell wall to most antimicrobials. The emergence and increasingly widespread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) revitalized keen interest in phage-inspired therapy. SWU1gp39 is a novel gene from mycobacteriophage SWU1 with unknown function. SWU1gp39 expressed in M. smegmatis conferred the host cell increased susceptibility to multiple antibiotics, including isoniazid, erythromycin, norfloxacin, ampicillin, ciprofloxacin, ofloxacin, rifampicin and vancomycin, and multiple environment stresses such as H2O2, heat shock, low pH and SDS. By using EtBr/Nile red uptake assays, WT-pAL-gp39 strain showed higher cell wall permeability than control strain WT-pAL. Moreover, the WT-pAL-gp39 strain produced more reactive oxygen species and reduced NAD(+)/NADH ratio. RNA-Seq transcriptomes of the WT-pAL-gp39 and WT-pAL revealed that the transcription of 867 genes was differentially regulated, including genes associated with lipid metabolism. Taken together, our results implicated that SWU1gp39, a novel gene from mycobacteriophage, disrupted the lipid metabolism of host and increased cell wall permeability, ultimately potentiated the efficacy of multiple antibiotics and stresses against mycobacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。