Overcoming the matched-sample bottleneck: an orthogonal approach to integrate omic data

克服匹配样本瓶颈:一种整合组学数据的正交方法

阅读:2
作者:Tin Nguyen ,Diana Diaz ,Rebecca Tagett ,Sorin Draghici

Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules whose primary function is to regulate the expression of gene products via hybridization to mRNA transcripts, resulting in suppression of translation or mRNA degradation. Although miRNAs have been implicated in complex diseases, including cancer, their impact on distinct biological pathways and phenotypes is largely unknown. Current integration approaches require sample-matched miRNA/mRNA datasets, resulting in limited applicability in practice. Since these approaches cannot integrate heterogeneous information available across independent experiments, they neither account for bias inherent in individual studies, nor do they benefit from increased sample size. Here we present a novel framework able to integrate miRNA and mRNA data (vertical data integration) available in independent studies (horizontal meta-analysis) allowing for a comprehensive analysis of the given phenotypes. To demonstrate the utility of our method, we conducted a meta-analysis of pancreatic and colorectal cancer, using 1,471 samples from 15 mRNA and 14 miRNA expression datasets. Our two-dimensional data integration approach greatly increases the power of statistical analysis and correctly identifies pathways known to be implicated in the phenotypes. The proposed framework is sufficiently general to integrate other types of data obtained from high-throughput assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。