In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development

计算机模拟通路激活网络分解分析(iPANDA)作为一种生物标志物开发方法

阅读:2
作者:Ivan V Ozerov ,Ksenia V Lezhnina ,Evgeny Izumchenko ,Artem V Artemov ,Sergey Medintsev ,Quentin Vanhaelen ,Alexander Aliper ,Jan Vijg ,Andreyan N Osipov ,Ivan Labat ,Michael D West ,Anton Buzdin ,Charles R Cantor ,Yuri Nikolsky ,Nikolay Borisov ,Irina Irincheeva ,Edward Khokhlovich ,David Sidransky ,Miguel Luiz Camargo ,Alex Zhavoronkov

Abstract

Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。