A transcriptome profile in hepatocellular carcinomas based on integrated analysis of microarray studies

基于微阵列研究整合分析的肝细胞癌转录组谱

阅读:2
作者:Feifei Wang ,Ruliang Wang ,Qiuwen Li ,Xueling Qu ,Yixin Hao ,Jingwen Yang ,Huixia Zhao ,Qian Wang ,Guanghui Li ,Fengyun Zhang ,He Zhang ,Xuan Zhou ,Xioumei Peng ,Yang Bian ,Wenhua Xiao

Abstract

Background: Despite new treatment options for hepatocellular carcinomas (HCC) recently, 5-year survival remains poor, ranging from 50 to 70%, which may attribute to the lack of early diagnostic biomarkers. Thus, developing new biomarkers for early diagnosis of HCC, is extremely urgent, aiming to decrease HCC-related deaths. Methods: In the study, we conducted a comprehensive characterization of gene expression data of HCC based on a bioinformatics method. The results were confirmed by real time polymerase chain reaction (RT-PCR) and TCGA database to prove the credibility of this integrated analysis. Results: After integrating analysis of seven HCC gene expression datasets, 1167 differential expressed genes (DEGs) were identified. These genes mainly participated in the process of cell cycle, oocyte meiosis, and oocyte maturation mediated by progesterone. The results of experiments and TCGA database validation in 10 genes was in full accordance with findings in integrated analysis, indicating the high credibility of our integrated analysis of different gene expression datasets. ASPM, CCT3, and NEK2 was showed to be significantly associated with overall survival of HCC patients in TCGA database. Conclusion: This method of integrated analysis may be a useful tool to minish the heterogeneity of individual microarray, hopefully outputs more accurate HCC transcriptome profiles based on large sample size, and explores some potential biomarkers and therapy targets for HCC. Keywords: Differentially expressed gene; Expression profile; Hepatocellular cancer; Integrated analysis; Real time polymerase chain reaction; TCGA validation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。