Glutamate-induced internalization of Ca(v)1.3 L-type Ca(2+) channels protects retinal neurons against excitotoxicity

谷氨酸诱导的Ca(v)1.3 L型Ca(2+)通道内化保护视网膜神经元免受兴奋性毒性

阅读:6
作者:Fengxia Mizuno, Peter Barabas, David Krizaj, Abram Akopian

Abstract

Glutamate-induced rise in the intracellular Ca(2+) level is thought to be a major cause of excitotoxic cell death, but the mechanisms that control the Ca(2+) overload are poorly understood. Using immunocytochemistry, electrophysiology and Ca(2+) imaging, we show that activation of ionotropic glutamate receptors induces a selective internalization of Ca(v)1.3 L-type Ca(2+) channels in salamander retinal neurons. The effect of glutamate on Ca(v)1.3 internalization was blocked in Ca(2+)-free external solution, or by strong buffering of internal Ca(2+) with BAPTA. Downregulation of L-type Ca(2+) channel activity in retinal ganglion cells by glutamate was suppressed by inhibitors of dynamin-dependent endocytosis. Stabilization of F-actin by jasplakinolide significantly reduced the ability of glutamate to induce internalization suggesting it is mediated by Ca(2+)-dependent reorganization of actin cytoskeleton. We showed that the Ca(v)1.3 is the primary L-type Ca(2+) channel contributing to kainate-induced excitotoxic death of amacrine and ganglion cells. Block of Ca(v)1.3 internalization by either dynamin inhibition or F-actin stabilization increased vulnerability of retinal amacrine and ganglion cells to kainate-induced excitotoxicity. Our data show for the first time that Ca(v)1.3 L-type Ca(2+) channels are subject to rapid glutamate-induced internalization, which may serve as a negative feedback mechanism protecting retinal neurons against glutamate-induced excitotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。