Butyrate alleviates renal fibrosis in CKD by regulating NLRP3-mediated pyroptosis via the STING/NF-κB/p65 pathway

丁酸通过 STING/NF-κB/p65 通路调节 NLRP3 介导的细胞焦亡,从而减轻 CKD 中的肾脏纤维化

阅读:5
作者:Xiaofang Tian, Yizhou Zeng, Qingxian Tu, Yang Jiao, Song Yao, Ying Chen, Li Sun, Qianhang Xia, Yadan Luo, Liying Yuan, Qianfeng Jiang

Abstract

Chronic kidney disease (CKD) is a serious and irreversible disease primarily characterized by chronic inflammation and renal fibrosis. Recent studies have suggested that gut microbiota-related metabolites, particularly short-chain fatty acids (SCFAs) are significantly associated with kidney diseases. Notably, butyrate, a type of SCFAs, plays a crucial role in this correlation. However, the effect of butyrate on renal fibrosis in patients with CKD and its potential mechanisms remain unclear. In this study, we demonstrated that butyrate levels are reduced as CKD progresses using a CKD C57BL/6 mouse model established by a 0.2% adenine diet. Exogenous supplementation of butyrate effectively alleviated renal fibrosis and repressed the levels of proteins associated with NLRP3-mediated pyroptosis (NLRP3, IL-1β, caspase-1, and GSDMD). Additionally, we conducted an in vitro experiment using HK-2 cells, which also confirmed that the elevated levels of NLRP3-mediated pyroptosis proteins in TGF-β1-stimulated HK-2 cells are reversed by butyrate intervention. Further, butyrate mitigated the activity of the STING/NF-κB/p65 pathway, and STING overexpression impaired the protective function of butyrate in CKD. Hence, we suggest that butyrate may have a renoprotective role in CKD, alleviating renal fibrosis possibly by regulating NLRP3-mediated pyroptosis via the STING/NF-κB/p65 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。