Integrated diagnostic network construction reveals a 4-gene panel and 5 cancer hallmarks driving breast cancer heterogeneity

整合诊断网络构建揭示了驱动乳腺癌异质性的4基因组合和5个癌症标志

阅读:2
作者:Xiaofeng Dai ,Tongyan Hua ,Tingting Hong

Abstract

Breast cancer encompasses a group of heterogeneous diseases, each associated with distinct clinical implications. Dozens of molecular biomarkers capable of categorizing tumors into clinically relevant subgroups have been proposed which, though considerably contribute in precision medicine, complicate our understandings toward breast cancer subtyping and its clinical translation. To decipher the networking of markers with diagnostic roles on breast carcinomas, we constructed the diagnostic networks by incorporating 6 publically available gene expression datasets with protein interaction data retrieved from BioGRID on previously identified 1015 genes with breast cancer subtyping roles. The Greedy algorithm and mutual information were used to construct the integrated diagnostic network, resulting in 37 genes enclosing 43 interactions. Four genes, FAM134B, KIF2C, ALCAM, KIF1A, were identified having comparable subtyping efficacies with the initial 1015 genes evaluated by hierarchical clustering and cross validations that deploy support vector machine and k nearest neighbor algorithms. Pathway, Gene Ontology, and proliferation marker enrichment analyses collectively suggest 5 primary cancer hallmarks driving breast cancer differentiation, with those contributing to uncontrolled proliferation being the most prominent. Our results propose a 37-gene integrated diagnostic network implicating 5 cancer hallmarks that drives breast cancer heterogeneity and, in particular, a 4-gene panel with clinical diagnostic translation potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。