Identification of transcriptome signature for myocardial reductive stress

鉴定心肌还原应激的转录组特征

阅读:2
作者:Justin M Quiles ,Madhusudhanan Narasimhan ,Timothy Mosbruger ,Gobinath Shanmugam ,David Crossman ,Namakkal S Rajasekaran

Abstract

The nuclear factor erythroid 2 like 2 (Nfe2l2/Nrf2) is a master regulator of antioxidant gene transcription. We recently identified that constitutive activation of Nrf2 (CaNrf2) caused reductive stress (RS) in the myocardium. Here we investigate how chronic Nrf2 activation alters myocardial mRNA transcriptome in the hearts of CaNrf2 transgenic (TG-low and TG-high) mice using an unbiased integrated systems approach and next generation RNA sequencing followed by qRT-PCR methods. A total of 246 and 1031 differentially expressed genes (DEGs) were identified in the heart of TGL and TGH in relation to NTG littermates at ~ 6 months of age. Notably, the expression and validation of the transcripts were gene-dosage dependent and statistically significant. Ingenuity Pathway Analysis identified enriched biological processes and canonical pathways associated with myocardial RS in the CaNrf2-TG mice. In addition, an overrepresentation of xenobiotic metabolic signaling, glutathione-mediated detoxification, unfolded protein response, and protein ubiquitination was observed. Other, non-canonical signaling pathways identified include: eNOS, integrin-linked kinase, glucocorticoid receptor, PI3/AKT, actin cytoskeleton, cardiac hypertrophy, and the endoplasmic reticulum stress response. In conclusion, this mRNA profiling identified a "biosignature" for pro-reductive (TGL) and reductive stress (TGH) that can predict the onset, rate of progression, and clinical outcome of Nrf2-dependent myocardial complications. We anticipate that this global sequencing analysis will illuminate the undesirable effect of chronic Nrf2 signaling leading to RS-mediated pathogenesis besides providing important guidance for the application of Nrf2 activation-based cytoprotective strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。