Paper-based in vitro tissue chip for delivering programmed mechanical stimuli of local compression and shear flow

用于传递局部压缩和剪切流的程序化机械刺激的纸基体外组织芯片

阅读:4
作者:Kattika Kaarj, Marianne Madias, Patarajarin Akarapipad, Soohee Cho, Jeong-Yeol Yoon

Abstract

Mechanical stimuli play important roles on the growth, development, and behavior of tissue. A simple and novel paper-based in vitro tissue chip was developed that can deliver two types of mechanical stimuli-local compression and shear flow-in a programmed manner. Rat vascular endothelial cells (RVECs) were patterned on collagen-coated nitrocellulose paper to create a tissue chip. Localized compression and shear flow were introduced by simply tapping and bending the paper chip in a programmed manner, utilizing an inexpensive servo motor controlled by an Arduino microcontroller and powered by batteries. All electrical compartments and a paper-based tissue chip were enclosed in a single 3D-printed enclosure, allowing the whole device to be independently placed within an incubator. This simple device effectively simulated in vivo conditions and induced successful RVEC migration in as early as 5 h. The developed device provides an inexpensive and flexible alternative for delivering mechanical stimuli to other in vitro tissue models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。