Insights into aluminum-tolerance pathways in Stylosanthes as revealed by RNA-Seq analysis

RNA-Seq分析揭示了柱花草属植物的铝耐受途径

阅读:2
作者:Caode Jiang ,Lusheng Liu ,Xiaofeng Li ,Rongrong Han ,Yunmin Wei ,Yongxiong Yu

Abstract

Stylo has a great potential for Al3+ resistance in acidic soils through secretion of citrate from the roots. To get insight into the molecular mechanisms responsible, transcriptomic changes were investigated in the roots after treatment with T01 (-Al3+, pH6.0), T02 (-Al3+, pH4.3) and T03 (50 µM AlCl3, pH4.3). In total, 83,197 unigenes generated from 130,933 contigs were obtained. Of them, 282, 148 and 816 differentially expressed unigenes (DEGs) were revealed in T01_vs_T02, T02_vs_T03 and T01_vs_T03 comparison, respectively (FDR < 0.001, log2FC > 2). DEGs by Al3+ were related to G-proteins, diacyglycerol and inositol metabolism, calcium-signaling, transcription regulation, protein modification and transporters for detoxification of Al3+. Additionally, Al3+ facilitates citrate synthesis via modifying gene expression of pathways responsible for citrate metabolism. Overall, Al3+ resistance in stylo involves multiple strategies and enhancement of citrate anabolism. The Al3+ signal transmits through heterotrimeric G-proteins, phospholipase C, inositol triphosphate, diacylglycerol, Ca2+ and protein kinases, thereby activating transcription and anion channels in plasma membrane, and resulting in citrate secretion from stylo roots.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。