Velvet antler polypeptide-loaded polyvinyl alcohol-sodium alginate hydrogels promote the differentiation of neural progenitor cells in 3D towards oligodendrocytes in vitro

鹿茸多肽负载聚乙烯醇-海藻酸钠水凝胶体外促进神经祖细胞向少突胶质细胞三维分化

阅读:4
作者:Siqi Ma, Zhaoqing Cong, Huan Chen, Han Wen, Li Cao, Chunyu Liu, Feifei Yang, Yonghong Liao

Abstract

Three-dimensional (3D) culture of neural progenitor cells (NPCs) in hydrogels represents a powerful means for recapitulating neurodevelopment, disease modelling and drug discovery. However, the differentiation of NPCs to oligodendrocytes in 3D scaffolds remains a great challenge. In this study, polyvinyl alcohol (PVA) - sodium alginate (SA) composite hydrogels intended for NPC culture in 3D were fabricated by ionic crosslinking between SA and calcium ions. It was demonstrated that adding PVA to the composite hydrogels resulted in increases in pore size and swelling rate and decreases in elastic moduli as the PVA proportion was enhanced. In addition, the composite hydrogels were biocompatible with mouse NPCs and improved the proliferation of the encapsulated NPCs compared with SA hydrogels. Moreover, when velvet antler polypeptides (VAPs), which were capable of facilitating the differentiation of NPCs to oligodendrocyte fate in 2D, were loaded into PVA-SA hydrogels, NPCs differentiated into neurons, astrocytes and oligodendrocytes, with the presence of VAPs promoting oligodendrogenesis in a dose-dependant manner. The present composite hydrogels provide a suitable scaffold for the construction of neural tissue engineering and neurological disease modelling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。