Optimization of the diagnosis of inherited colorectal cancer using NGS and capture of exonic and intronic sequences of panel genes

利用NGS技术优化遗传性结直肠癌的诊断,并捕获panel基因的外显子和内含子序列。

阅读:2
作者:Stéphanie Baert-Desurmont ,Sophie Coutant ,Françoise Charbonnier ,Pierre Macquere ,François Lecoquierre ,Mathias Schwartz ,Maud Blanluet ,Myriam Vezain ,Raphaël Lanos ,Olivier Quenez ,Jacqueline Bou ,Emilie Bouvignies ,Steeve Fourneaux ,Sandrine Manase ,Stéphanie Vasseur ,Jacques Mauillon ,Marion Gerard ,Régine Marlin ,Gaëlle Bougeard ,Julie Tinat ,Thierry Frebourg ,Isabelle Tournier

Abstract

We have developed and validated for the diagnosis of inherited colorectal cancer (CRC) a massive parallel sequencing strategy based on: (i) fast capture of exonic and intronic sequences from ten genes involved in Mendelian forms of CRC (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, STK11, SMAD4, BMPR1A and PTEN); (ii) sequencing on MiSeq and NextSeq 500 Illumina platforms; (iii) a bioinformatic pipeline that includes BWA-Picard-GATK (Broad Institute) and CASAVA (Illumina) in parallel for mapping and variant calling, Alamut Batch (Interactive BioSoftware) for annotation, CANOES for CNV detection and finally, chimeric reads analysis for the detection of other types of structural variants (SVs). Analysis of 1644 new index cases allowed the identification of 323 patients with class 4 or 5 variants, corresponding to a 20% disease-causing variant detection rate. This rate reached 37% in patients with Lynch syndrome, suspected on the basis of tumour analyses. Thanks to this strategy, we detected overlapping phenotypes (e.g., MUTYH biallelic mutations mimicking Lynch syndrome), mosaic alterations and complex SVs such as a genomic deletion involving the last BMPR1A exons and PTEN, an Alu insertion within MSH2 exon 8 and a mosaic deletion of STK11 exons 3-10. This strategy allows, in a single step, detection of all types of CRC gene alterations including SVs and provides a high disease-causing variant detection rate, thus optimizing the diagnosis of inherited CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。