Exome sequencing of fetal anomaly syndromes: novel phenotype-genotype discoveries

胎儿畸形综合征的外显子组测序:新的表型-基因型发现

阅读:2
作者:Nicole Meier ,Elisabeth Bruder ,Olav Lapaire ,Irene Hoesli ,Anjeung Kang ,Jürgen Hench ,Sylvia Hoeller ,Julie De Geyter ,Peter Miny ,Karl Heinimann ,Rabih Chaoui ,Sevgi Tercanli ,Isabel Filges

Abstract

The monogenic etiology of most severe fetal anomaly syndromes is poorly understood. Our objective was to use exome sequencing (ES) to increase our knowledge on causal variants and novel candidate genes associated with specific fetal phenotypes. We employed ES in a cohort of 19 families with one or more fetuses presenting with a distinctive anomaly pattern and/or phenotype recurrence at increased risk for lethal outcomes. Candidate variants were identified in 12 families (63%); in 6 of them a definite diagnosis was achieved including known or novel variants in recognized disease genes (MKS1, OTX2, FGFR2, and RYR1) and variants in novel disease genes describing new fetal phenotypes (CENPF, KIF14). We identified variants likely causal after clinical and functional review (SMAD3, KIF4A, and PIGW) and propose novel candidate genes (PTK7, DNHD1, and TTC28) for early human developmental disease supported by functional and cross-species phenotyping evidence. We describe rare and novel fetal anomaly syndromes and highlight the diagnostic utility of ES, but also its contribution to discovery. The diagnostic yield of the future application of prenatal ES will depend on our ability to increase our knowledge on the specific phenotype-genotype correlations during fetal development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。