A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer

基于计算机断层扫描图像的肿瘤中观结构数学描述符可用于注释上皮性卵巢癌的预后和分子表型

阅读:2
作者:Haonan Lu ,Mubarik Arshad ,Andrew Thornton ,Giacomo Avesani ,Paula Cunnea ,Ed Curry ,Fahdi Kanavati ,Jack Liang ,Katherine Nixon ,Sophie T Williams ,Mona Ali Hassan ,David D L Bowtell ,Hani Gabra ,Christina Fotopoulou ,Andrea Rockall ,Eric O Aboagye

Abstract

The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35-40% despite maximal treatment efforts, highlighting a need for stratification biomarkers for personalized treatment. Here we extract 657 quantitative mathematical descriptors from the preoperative CT images of 364 EOC patients at their initial presentation. Using machine learning, we derive a non-invasive summary-statistic of the primary ovarian tumor based on 4 descriptors, which we name "Radiomic Prognostic Vector" (RPV). RPV reliably identifies the 5% of patients with median overall survival less than 2 years, significantly improves established prognostic methods, and is validated in two independent, multi-center cohorts. Furthermore, genetic, transcriptomic and proteomic analysis from two independent datasets elucidate that stromal phenotype and DNA damage response pathways are activated in RPV-stratified tumors. RPV and its associated analysis platform could be exploited to guide personalized therapy of EOC and is potentially transferrable to other cancer types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。