A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation

用于预测和设计替代性多聚腺苷酸化的深度神经网络

阅读:3
作者:Nicholas Bogard ,Johannes Linder ,Alexander B Rosenberg ,Georg Seelig

Abstract

Alternative polyadenylation (APA) is a major driver of transcriptome diversity in human cells. Here, we use deep learning to predict APA from DNA sequence alone. We trained our model (APARENT, APA REgression NeT) on isoform expression data from over 3 million APA reporters. APARENT's predictions are highly accurate when tasked with inferring APA in synthetic and human 3'UTRs. Visualizing features learned across all network layers reveals that APARENT recognizes sequence motifs known to recruit APA regulators, discovers previously unknown sequence determinants of 3' end processing, and integrates these features into a comprehensive, interpretable, cis-regulatory code. We apply APARENT to forward engineer functional polyadenylation signals with precisely defined cleavage position and isoform usage and validate predictions experimentally. Finally, we use APARENT to quantify the impact of genetic variants on APA. Our approach detects pathogenic variants in a wide range of disease contexts, expanding our understanding of the genetic origins of disease. Keywords: MPRA; SNV; alternative polyadenylation; cis-regulation; deep learning; generative model; mRNA processing; machine learning; massively parallel reporter assay; single nucleotide variant; synthetic biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。