A novel Penicillium sumatraense isolate reveals an arsenal of degrading enzymes exploitable in algal bio-refinery processes

一种新型苏门答腊青霉菌分离株揭示了可用于藻类生物精炼工艺的一系列降解酶

阅读:4
作者:M Giovannoni, I Larini, V Scafati, A Scortica, M Compri, D Pontiggia, G Zapparoli, N Vitulo, M Benedetti, B Mattei

Background

Microalgae are coming to the spotlight due to their potential applications in a wide number of fields ranging from the biofuel to the pharmaceutical sector. However, several factors such as low productivity, expensive harvesting procedures and difficult metabolite extractability limit their full utilization at industrial scale. Similarly to the successful employment of enzymatic arsenals from lignocellulolytic fungi to convert lignocellulose into fermentable sugars for bioethanol production, specific algalytic formulations could be used to improve the extractability of lipids from microalgae to produce biodiesel. Currently, the research areas related to algivorous organisms, algal saprophytes and the enzymes responsible for the hydrolysis of algal cell wall are still little explored.

Conclusions

The improved lipid extractability from C. vulgaris biomass treated with the fungal filtrate highlighted the potential of algal saprophytes in the bioprocessing of microalgae, posing the basis for the sustainable transformation of algal metabolites into biofuel-related compounds.

Results

Here, an algal trap method for capturing actively growing microorganisms was successfully used to isolate a filamentous fungus, that was identified by whole-genome sequencing, assembly and annotation as a novel Penicillium sumatraense isolate. The fungus, classified as P. sumatraense AQ67100, was able to assimilate heat-killed Chlorella vulgaris cells by an enzymatic arsenal composed of proteases such as dipeptidyl- and amino-peptidases, β-1,3-glucanases and glycosidases including α- and β-glucosidases, β-glucuronidase, α-mannosidases and β-galactosidases. The treatment of C. vulgaris with the filtrate from P. sumatraense AQ67100 increased the release of chlorophylls and lipids from the algal cells by 42.6 and 48.9%, respectively. Conclusions: The improved lipid extractability from C. vulgaris biomass treated with the fungal filtrate highlighted the potential of algal saprophytes in the bioprocessing of microalgae, posing the basis for the sustainable transformation of algal metabolites into biofuel-related compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。