Screening and identification of biomarkers for systemic sclerosis via microarray technology

利用微阵列技术筛选和鉴定系统性硬化症的生物标志物

阅读:2
作者:Chen Xu ,Ling-Bing Meng ,Yu-Chen Duan ,Yong-Jing Cheng ,Chun-Mei Zhang ,Xing Zhou ,Ci-Bo Huang

Abstract

Systemic sclerosis (SSc) is a complex autoimmune disease. The pathogenesis of SSc is currently unclear, although like other rheumatic diseases its pathogenesis is complicated. However, the ongoing development of bioinformatics technology has enabled new approaches to research this disease using microarray technology to screen and identify differentially expressed genes (DEGs) in the skin of patients with SSc compared with individuals with healthy skin. Publicly available data were downloaded from the Gene Expression Omnibus (GEO) database and intra‑group data repeatability tests were conducted using Pearson's correlation test and principal component analysis. DEGs were identified using an online tool, GEO2R. Functional annotation of DEGs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, the construction and analysis of the protein‑protein interaction (PPI) network and identification and analysis of hub genes was carried out. A total of 106 DEGs were detected by the screening of SSc and healthy skin samples. A total of 10 genes [interleukin‑6, bone morphogenetic protein 4, calumenin (CALU), clusterin, cysteine rich angiogenic inducer 61, serine protease 23, secretogranin II, suppressor of cytokine signaling 3, Toll‑like receptor 4 (TLR4), tenascin C] were identified as hub genes with degrees ≥10, and which could sensitively and specifically predict SSc based on receiver operator characteristic curve analysis. GO and KEGG analysis showed that variations in hub genes were mainly enriched in positive regulation of nitric oxide biosynthetic processes, negative regulation of apoptotic processes, extracellular regions, extracellular spaces, cytokine activity, chemo‑attractant activity, and the phosphoinositide 3 kinase‑protein kinase B signaling pathway. In summary, bioinformatics techniques proved useful for the screening and identification of biomarkers of disease. A total of 106 DEGs and 10 hub genes were linked to SSc, in particular the TLR4 and CALU genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。