Stability of non-Newtonian nanofluid movement with heat/mass transportation passed through a hydro magnetic elongating/contracting sheet: multiple branches solutions

非牛顿纳米流体通过磁力拉伸/收缩薄片进行热/质传输的运动稳定性:多分支解决方案

阅读:7
作者:Humaira Yasmin, Azzh Saad Alshehry, Zeeshan, Abdul Hamid Ghanie, Rasool Shah

Abstract

Nanomaterials have found wide applications in many fields, leading to significant interest in the scientific world, in particular automobile thermal control, heat reservoirs, freezers, hybrid control machines, paper creation, cooling organisms, etc. The aim of the present study is to investigate the MHD non-Newtonian nanofluid and time-based stability analysis to verify the stable branch by computing the smallest eigenvalue across a slendering, extending, or shrinking sheet with thermal radiation and chemical reactions. The basic flow equations have been obtained in terms of PDEs, which are then converted to ODEs in dimensionless form via a suitable transformation. Based on the MATLAB software package bvp4c, the numerical solution has been obtained for the system of equations. A comparative study of the present and published work is impressive. The influence of evolving factors such as Prandtl number, Schmidt number, magnetic factor, heat generation/absorption, thermal, thermophoresis factor, chemical factor, second-grade fluid factor, and Brownian number on the velocities, energy, and concentration patterns is discussed through graphs. It is perceived that the temperature distribution enriches owing to the greater magnitude of the heat source. Furthermore, it is observed that a greater magnitude of radiation improves the temperature curves. It is also investigated from the present analysis that concentration and temperature profiles increase due to the growing values of the thermophoresis factor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。