RNA binding motif protein 3 (RBM3) promotes protein kinase B (AKT) activation to enhance glucose metabolism and reduce apoptosis in skeletal muscle of mice under acute cold exposure

RNA结合基序蛋白3(RBM3)促进蛋白激酶B(AKT)活化,增强葡萄糖代谢,减少急性冷暴露下小鼠骨骼肌细胞凋亡

阅读:10
作者:Yang Liu #, Hongzhao Shi #, Yajie Hu, Ruizhi Yao, Peng Liu, Yuying Yang, Shize Li

Abstract

The main danger of cold stress to animals in cold regions is systemic metabolic changes and protein synthesis inhibition. RBM3, an exceptional cold shock protein, is rapidly upregulated in response to hypothermia to resist the adverse effects of cold stress. However, the mechanism of the protective effect and the rapid upregulation of RBM3 remains unclear. O-GlcNAcylation, an atypical O-glycosylation, is precisely regulated only by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) and participates in the signal transduction of multiple cellular stress responses as a "stress and nutrition receptor." Therefore, our study aimed to explore the mechanism of RBM3 regulating glucose metabolism and promoting survival in skeletal muscle under acute cold exposure. Meanwhile, our study verifies whether O-GlcNAcylation mediated by OGT rapidly upregulates RBM3. The blood and skeletal muscle of mice were collected at the end of cold exposure treatment for 0, 2, and 4 h. Changes in levels of RBM3, AKT, glycolysis apoptosis, and OGT were measured. The results show that acute cold exposure upregulated RBM3, OGT, and AKT phosphorylation and increased energy consumption, which enhanced glycolysis and prevent apoptosis. In the 32 °C mild hypothermia model in vitro, overexpression of RBM3 enhanced AKT phosphorylation. Meanwhile, inactivation of AKT by wortmannin resulted in increased apoptosis and decreased glucose metabolism in skeletal muscle under acute cold exposure. In addition, OGT-mediated O-GlcNAcylation of p65 was confirmed in mouse myoblast cell line (C2C12) cells at mild hypothermia. O-GlcNAcylation level affected p65 activity and nuclear translocation. Compared with wild type (WT) mice, RBM3 and p65 phosphorylation were decreased in specific skeletal muscle Ogt (KO) mice, whereas AKT phosphorylation, glycolysis, and apoptosis were increased. Taken together, O-GlcNAcylation of p65 upregulates RBM3 to promote AKT phosphorylation, enhance glucose metabolism, and reduce apoptosis in skeletal muscle of mice under acute cold exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。