Investigating skewness to understand gene expression heterogeneity in large patient cohorts

通过研究偏度来了解大型患者队列中的基因表达异质性

阅读:2
作者:Benjamin V Church ,Henry T Williams ,Jessica C Mar

Abstract

Background: Skewness is an under-utilized statistical measure that captures the degree of asymmetry in the distribution of any dataset. This study applied a new metric based on skewness to identify regulators or genes that have outlier expression in large patient cohorts. Results: We investigated whether specific patterns of skewed expression were related to the enrichment of biological pathways or genomic properties like DNA methylation status. Our study used publicly available datasets that were generated using both RNA-sequencing and microarray technology platforms. For comparison, the datasets selected for this study also included different samples derived from control donors and cancer patients. When comparing the shift in expression skewness between cancer and control datasets, we observed an enrichment of pathways related to the immune function that reflects an increase towards positive skewness in the cancer relative to control datasets. A significant correlation was also detected between expression skewness and the top 500 genes corresponding to the most significant differential DNA methylation occurring in the promotor regions for four Cancer Genome Atlas cancer cohorts. Conclusions: Our results indicate that expression skewness can reveal new insights into transcription based on outlier and asymmetrical behaviour in large patient cohorts. Keywords: Cancer genomics; Gene expression; Non-normality; Skewness; TCGA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。