SZN-413, a FZD4 Agonist, as a Potential Novel Therapeutic for the Treatment of Diabetic Retinopathy

SZN-413,一种 FZD4 激动剂,可作为治疗糖尿病视网膜病变的潜在新型疗法

阅读:6
作者:Huy Nguyen, Hui Chen, Meghah Vuppalapaty, Elizabeth Whisler, Kelsey Ronarda Logas, Parthasarathy Sampathkumar, Russell Byron Fletcher, Asmiti Sura, Nicholas Suen, Suhani Gupta, Tom Lopez, Jay Ye, Shengjiang Tu, Menaka Bolaki, Wen-Chen Yeh, Yang Li, Sung-Jin Lee

Conclusions

Reduction of neovascular tufts and avascular areas and of VEGF-driven retinal vascular leakage suggests that SZN-413 can simultaneously address retinal non-perfusion and vascular leakage. Translational relevance: FZD4 signaling modulation by SZN-413 is a novel mechanism of action that can offer a new therapeutic strategy for diabetic retinopathy.

Methods

We developed a novel Norrin mimetic (SZN-413-p) targeting FZD4 and low-density lipoprotein receptor-related protein 5 (LRP5) and examined its effect on retinal and brain endothelial cells in vitro. SZN-413-p was subsequently humanized, resulting in the therapeutic candidate SZN-413, and was examined in animal models of retinopathy. In an oxygen-induced retinopathy mouse model, avascular and neovascularization areas were measured. Furthermore, in a vascular endothelial growth factor (VEGF)-induced retinal vascular leakage rabbit model, the impact on vascular leakage by SZN-413 was examined by measuring fluorescein leakage.

Purpose

There remains a high unmet need for therapies with new mechanisms of action to achieve reperfusion of ischemic retina in diabetic retinopathy. We examined whether a novel frizzled class receptor 4 (FZD4) agonist could promote regeneration of functional blood vessels in animal models of retinopathy.

Results

SZN-413-p induced Wnt/β-catenin signaling and upregulated blood-brain barrier/blood-retina barrier gene expressions in endothelial cells. In the oxygen-induced retinopathy mouse model, SZN-413-p and SZN-413 significantly reduced the neovascularization area size (P < 0.001) to a level comparable to, or better than the positive control aflibercept. Both agonists also showed a reduction in avascular area size compared to vehicle (P < 0.001) and aflibercept groups (P < 0.05 and P < 0.01 for SZN-413-p and SZN-413, respectively). In the VEGF-induced retinal vascular leakage rabbit model, SZN-413 reduced retinal vascular leakage by ∼80%, compared to the vehicle-treated group (P < 0.01). Conclusions: Reduction of neovascular tufts and avascular areas and of VEGF-driven retinal vascular leakage suggests that SZN-413 can simultaneously address retinal non-perfusion and vascular leakage. Translational relevance: FZD4 signaling modulation by SZN-413 is a novel mechanism of action that can offer a new therapeutic strategy for diabetic retinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。