Multi-omics Data Integration, Interpretation, and Its Application

多组学数据整合、解读及其应用

阅读:2
作者:Indhupriya Subramanian ,Srikant Verma ,Shiva Kumar ,Abhay Jere ,Krishanpal Anamika

Abstract

To study complex biological processes holistically, it is imperative to take an integrative approach that combines multi-omics data to highlight the interrelationships of the involved biomolecules and their functions. With the advent of high-throughput techniques and availability of multi-omics data generated from a large set of samples, several promising tools and methods have been developed for data integration and interpretation. In this review, we collected the tools and methods that adopt integrative approach to analyze multiple omics data and summarized their ability to address applications such as disease subtyping, biomarker prediction, and deriving insights into the data. We provide the methodology, use-cases, and limitations of these tools; brief account of multi-omics data repositories and visualization portals; and challenges associated with multi-omics data integration. Keywords: biomarker prediction; data integration; data repositories; disease subtyping; multi-omics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。