Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering

通过计算机指导的酶工程提高醇脱氢酶的沸点稳定性

阅读:2
作者:Friso S Aalbers ,Maximilian Jlj Fürst ,Stefano Rovida ,Milos Trajkovic ,J Rubén Gómez Castellanos ,Sebastian Bartsch ,Andreas Vogel ,Andrea Mattevi ,Marco W Fraaije

Abstract

Enzyme instability is an important limitation for the investigation and application of enzymes. Therefore, methods to rapidly and effectively improve enzyme stability are highly appealing. In this study we applied a computational method (FRESCO) to guide the engineering of an alcohol dehydrogenase. Of the 177 selected mutations, 25 mutations brought about a significant increase in apparent melting temperature (ΔTm ≥ +3 °C). By combining mutations, a 10-fold mutant was generated with a Tm of 94 °C (+51 °C relative to wild type), almost reaching water's boiling point, and the highest increase with FRESCO to date. The 10-fold mutant's structure was elucidated, which enabled the identification of an activity-impairing mutation. After reverting this mutation, the enzyme showed no loss in activity compared to wild type, while displaying a Tm of 88 °C (+45 °C relative to wild type). This work demonstrates the value of enzyme stabilization through computational library design. Keywords: E. coli; alcohol dehydrogenase; biocatalysis; biotechnology; cofactor; computational biology; enzyme engineering; molecular biophysics; oxidations; structural biology; systems biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。